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SUMMARY

This_report describes the development and use of the SPACEDRIVE
software. SPACEDRIVE is user interactive software that determines system and
missxgﬁlgammeters for potential SDI earth orbital electric propulsion applications.
SPA! RIVE also contains an electric propulsion reference search data base and
descriptive overviews of a large number of electric propulsion engine concepts.
Specig:w model equations contained in SPACED are presented and their
terms and use defined. Operation of each SPACEDRIVE utility is discussed.
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ASSESSMENT OF HIGH POWER ELECTRIC PROPULSION
CONCEPTS FOR ENHANCED MISSION CAPABILITY

1.0 OBJECTIVE

Facilitate a greater general understanding of the capability of various
electric propulsion concepts by developing user interactive software that
determines system and mission parameters for potential SDI earth orbital
electric propulsion applications.

2.0 INTRODUCTION

This document describes the functions, underlying models, and
operation of the SPACEDRIVE software package which is contained in the
accompanying diskettes. SPACEDRIVE utilities perform several functions.
First, a series of system scaling relationshi eveloped gnmanllg from
performance data for existing engines, forms the basis for the SPACEDRIVE
systems analysis utility for ion engines and arcjets operating in high power
ranges. Second, a mission analysis utility compares application of ion and
arcjet engines with chemical propulsion for several earth orbital missions.
SPACED also includes a database utility of electric propulsion
technical references and provides search functions for this library, allowing
the user access to performance data and %rojections for a wide variety of
electric propulsion engine concepts. inally, SPACEDRIVE has a
descriptive overview utility which describes the principle of operation, state
of development, ical performance characteristics, and high power
operating potential for a wide range of electric propulsion concepts.

SPACEDRIVE makes the utilities presented above readily accessible
through a structured collection of user interactive menus. ese menus
contain self explanatory messages describing how to use the menu and how
to proceed to other menus. No prior expertise in the use of this software is
retﬁ'l.lired for succesful operation of SPACEDRIVE. Each SPACEDRIVE
utility provides many options to the user. The versatility of SPACEDRIVE
and 1ts ability to provide propulsion system mission trade off comparisons
depends on the creativity of the user in manipulating these options.

3.0 SYSTEMS ANALYSIS UTILITY

The systems analysis utility of SPACEDRIVE requires that the user
input the available spacecraft power, the engine specific impulse and
propellant and whether ion or arcjet engines are to be considered. These
data have been chosen as SPACEDhIVE system analysis inputs because they
should be readily available when the user has specific spacecraft and mission
constraints with which the propulsion system must comply. When the user
supplies these data, the systems analysis determines, within the limits of the
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model, the propulsion system design and performance specifications that
satisfies the user's inpnts.sys'lhe resultant rop%]esior;?stcm performance level
and mass estimates are conservative are derived from demonstrated and
well documented hardware development and flight programs.

3.1 System Analysis Assumptions

Several assumptions are included in the model development for both
the ion engine and arcjet engine system analyses and are listed below:

(i) The power system is assumed to be already present as part of the
host and its mass is simply one part of the user supplied

initial host spacecraft mass.

(ii) There is one power processor unit per engine. Passive thermal
radiators are assumed for power processor heat rejection. The
thermal radiator mass is included in the propulsion system structural
mass and not in the power processor mass projection.

(iii) Power processor mass estimates include telemetry, command and
control circuitry, and cable harness and connector allowances.

(iv) Attitude control is assumed to be provided by the host spacecraft
attitude control system.

(v) No gimbals are used.

(vi) All engines include spacecraft thermal protection in the mass
estimates.

(vii) The ion and arcjet propulsion system mass estimates do not
include the llant tanllt: and tank supporting structure (however,
the mass of these cogonents is inclu in the SPACEDRIVE
mission analysis utility calculations).

giii) The flow system mass estimates include regulators, valves,

ters,ﬂowlin«,etc.,thatarezpropriatetothep llant and
engine choice, but do not include the propellant and tank

supporting structure.

(ix) No contingency allowance is provided in the ion and arcjet
propulsion system mass estimates (or in the chemical propulsion
system mass estimates which are used in the SPACED mission

analysis utility).
(x) Demonstrated and conservative component technology levels are
assumed. o i

(xi) For a given available spacecraft power, the propulsion systems
are sized toglllvsee the largest possible ion or arcjet %nggg thsl{sm the
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constraints imposed by the model. This approach minimizes the
number of ion or arcjet engines regn;ired to process a given host
spacecraft available er level and does not require the user to
know, apriori, specific engine sizes and operating points.

If the user wishes to determine system level parameters for a specific
ion or arc¢jet and then apply these to a mission, the user can enter in the
systerr. analysis the known engine design specific impulse, propellant type,
and, in tglaoe of the available space power, enter a value equal to 1.11
times the en%'ge input er (this accounts for th:uﬂower rocessor
inefficiency). The SPA RIVE system analysis utility will then determine
all the mass and performance estimates for the specific single engine design.
Appropriate multiples of this single engine system can then be specified by
the user for the available spacecraft power in order to specify the mass of the
user's specific multiple engine system for input into, and proper functioning
of, the PACEDRI&E mission analysis utility.

Figure 1 shows schemati%llEy the major clectn:[:m]])ropulsion system
clements assumed in the SPACEDRIVE systems ysis utility. As
mentioned n'i)lreviously, the propulsion system mass determined by the system
analysis utility does not_include the propellant, and propellant and
supporting structure. This subsystem element, along with the user host
spacecraft adapter mass (which is 10% of the mass of everything to its right
icgl Figure 1) is included in the SPACEDRIVE mission analysis utility
tions.

3.2 Jon Engine Analysis Output Parameters

The ion engine system analysis calculates both engine and system
design and fpert'ormancc parameters. A complete list of the calculated
parameters follows (note that in this list each parameter has listed its units as
used by the system model equations in section 3.3.2 and, in Barentheses, its
common usage units which are displayed on the SPACEDRIVE system
analysis utility screen):

Engine Parameters:

Isp engine specific impulse, s (s)
PE engine input power, kW (kW)
"e total engine efficiency

TE engine thrust, N (N)

TB/PE thrust-to-power ratio, N/kW (mN/KkW)

J beam current, A (A)




beam voltage, V (V)

b I
Vt total voltage, V (V)
net-to-total voltage ratio
Jd discharge current, A (A)
Db beam diameter, m (cm)
Lg grid separation, m (mm)
ds screen hole diameter, m (mm)
Jb/H beam current per hole, A (mA)
mE engine mass, kg (kg) :
op power processor mass, kg (kg)
System Parameters:
T total system thrust, N (N)
P available spacecraft power, kW (kW)
T/P thrust-to-power ratio, N/KW (mN/kW)
nps propulsion system mass, kg (kg)
aps propulsion system specific mass, kg/kW (kg/kW)
NE number of ion engines required

A
pp

fs

engine system area, m2 (mz)

power processor system area, m2 (mz)
flow system mass, kg (kg)

ep system structural mass, kg (kg)

N B R E
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m propulsion system mass flow, kg/s (g/s)

“ps propulsion system efficiency

Figure 2 shows an electron-bombardment ion gliligi.ne (which is the ion
engine concept assumed for this analysis) and identifies the major engine
design parameters that are included in the list above.

The equations used by SPACEDRIVE to define these ion engine
parameters are derived primarily from physical principles and referenced
performance data of existing ion engines. The equations and assumptions
used in the SPACEDRIVE ion engine systems analysis are presented and
discussed in the sections immediately following.

3.3 Ion Engine Analysis Model

The SPACEDRIVE ion engine system analysis is designed to give
satisfactory results with a minimum of user inputs and with a minimum
required level of user electric propulsion technology expertise. For users
familiar with ion engine operation, operating data from existing engines may
be used as inputs into the SPACEDRIVE ion engine system analysis and the
results may be compared with known parameters.

3.3.1 Ion Engine System Analysis Constants
Certain physical constants and some fixed ion propulsion system

g_al\]rameters are used in the SPACEDRIVE ion engine system analysis utility.
e nomenclature for these constants are shown below:

€ discharge loss (eV/ion)

Vnc neutralizer coupling voltage (V)

Vd discharge voltage (V)

e fundamental electric charge (c)

go Earth gravitational acceleration (m/sz)
"u total engine propellant utilization

2 total engine thrust loss factor

grid gap electric field stress (V/m)

ion mass (kg)

R N R



ppP
S/G

mts

m
cps

power processor efficiency

grid span-to-gap ratio

propellant tank and structure mass fraction

chemical propulsion system mass (kg)

The values assigned these constants are shown below:

€

v
nc

Va

150 ev/ion
10V

28 V

1.6 x 10 ¢

0.90

0.88

2.193x10 2°kg

1.399%10 2°kg

6.671x10 2%kg

0.90

(discharge loss)

(neutralizer coupling voltage)

(discharge voltage)

(fundamental electric charge)

(gravitational constant)

(xenon propellant utilization efficiency)
(krypton propellant utilization efficiency)

(argon propellant utilization efficiency)

(total thrust loss factor)

(xenon ion mass)
(krypton ion mass)

(argon ion mass)

(power processor efficiency)
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’Ia'hle following constraints are applied to the permissible specific impulse
values:

for X : 2500 = I £ 10000
e sp

for K : 3000 = I £ 10000
r sp

for A : 3500 = I = 10000
r sp

where Isp is the specific impulse in seconds.

3.3.2 Ion Engine Equations

This section presents the specific equations and methodology used by
SPACEDRIVE to determine ion engine and system performance
parameters. In the most s%art, these equations are presented in the order in
which they are used by SPACED . While some of the equations are
derivable from known ion engine physical operating principles, many are
empirically derived from scaling known ion engine performance
characteristics and system characteristics. The papers and reports from
which these data were obtained are contained in the reference section at the
end of this document. Some assumptions had to be made to construct a
closed form solution scheme. These assumptions were, in all cases, made to
give conservative results with no stringent demand on any one particular
technology level. It is impossible, in a general model such as this one, to
embrace everyone's views on specific levels of technology development.
Nevertheless, the model equations do satisfactorily predict the Yerformance
of most electron-bombardment ion engines that have been developed or are
presently under development and testing. The solution scheme is as follows:

From the user inputs of available spacecraft power and desired
specific impulse, an equivalent propulsion system total discharge current is
calculated from:

P e +V
. ep (€ * Va)
J, = . A
d 2
‘i[gols]
vi{d| ==l .,y
d 2e n e nc

where J; is the equivalent total discharge current for
the entire propulsion system.




—ge

Next, the number of ion egg‘nes necessary to process this available
c

spacecraft er at the given spe impulse is determined by assuming a
maximum &gcwharge current per engine of 100 ampere and subsu};uting into: '
*
N = i——
E Jd max 1

where NE is the number of engines, which is set to the next
highest integer and J
current (A).

is the maximum engine discharge
d max

Note that no engine redundancy is assumed and that for the rest of
the anaé)-'sm an equal number of ion engines and power processor units is
assume

The input er required by each engine is determined from the

power processor efficiency and the equation:

n__P
p =By
E N,

where PE is the input power to each engine.

The engine discharge current is calculated from the equation:
J*
d
J. = — , A
d NE

where J d is the discharge current for each engine.

The ion energy, or beam voltage, is calculated from the equation:

mi goIs 2
V. = = ——2 ’ v
b 2e ﬂu ]

where V_ is the engine beam voltage. 2




The total ion engine efficiency is calculated from the equation:

where "e is the total ion engine efficiency.

The ion beam current for each engine is calculated from the equation:

2en P_ x 1000

E'u E
mi[ gaIsp ]2

where Jb is the engine beam current.

The thrust for each engine is calculated from the equation:

meigolsg
T = ;, N
E e nu

where TE is the engine thrust.

The total propulsion system thrust is calculated from the equation:

T = N T, , N

where T is the total propulsion system thrust.
The ion engine thrust-to-power ratio is calculated from the equation:
J m, g

b 1

TE/PE e

where TE/PE is the ion engine thrust-to-power ratio.

I
o “sp
uPE

, N/kW
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The ion engine system thrust-to-power ratio is calculated from the equation:

N, T
/P = E—pg,N/kW

where T/P is the ion engine system thrust-to-power ratio.

The above equations define the operating parameters of the required
ion engine. To determine the design parameters for the ion engine, some
assumptions are made. First, it is assumed that the ion engine will operate in
a regime where the net-to-total voltage ratio, R, will be between 0.20 and
0.90. For values of R greater than 0.55, a two-grid ion accelerator system is
assumed. For values of R equal to or less than 0.55, the analysis assumes
that the ion engine will have a three-grid accelerator system, and that this
additional grid will increase the engine mass by 10%. Also, it is assumed that
the grid gap electric field stress is constant as the grid gap increases and the
screen hole diameter increases in a fixed ratio to accomodate different ion
engine specific impulse inputs. Finally, due to fabrication constraints, it is
assumed that the screen and accelerator grid span-to-gap ratio can be no
greater that 550. Application of these assumptions is achieved by an iterative
solution to the followi tions, where on each iteration the value of R is
decreased in steps of 0.01 from an initial value of 0.90-until all equations and
constraints are satisfied:

2
i) I i 0.67 D
Ip/H dz
J. /H _
ii) —'11—7- = 1.032 x 10 >
Ve
L
iid) 3‘1 = 0.30
8
v
iv) ZE = 2,66 Xx 106, V/m
g
v
b
V) Vt= i—

10
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1.9 x 10 3, m

n

vi) d

s
vii) 0.2 = R = 0.9
viii) for beam diameter D, = 0.30 m :

b

S/G = exp[ 4.793 + 5.058 D ]

for beam diameter Db > 0.30 m :

S/G = 550
where S/G is the grid set span-to-gap ratio
ix) Db 2 0.10 , m

Usini;he values for grid diameter, power and the number of engines

determined by the scheme above, the following scaling relations are used to
determine the remaining parameters:
mg = 17.307 + 7.082 Ln[ D, ], kg 0.55 < R = 0.9
m, 7 1.1 [ 17.307 + 7.082 Ln[ Db] ], kg 0.2 =R 3 0.55

where m, is the ion engine mass including thermal isolation.

m_ = 0.397 [ P_ x 1000 , kg
PP

0.544
g X 1000 ]

where mpp is the power processor mass.

2 2
AE = NE[ 2.65 Db ], m

where Ae is the ion engine array area.

11
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2
App N [ 0.2277 P, ], m

where App is the power processor array area.

mfs = 4,70 + 2.62 NE' kg

where P is the flow system mass.

m_ = 0.30 [ N, m_ ] + 2.277 [ No Py ] , kg

where m_ is the ion engine system structural and passive
thermal radiator mass.

By Ng [ m o * B ] +m_ +m._, kg
where mps is the ion propulsion system mass.

O
aps P’ kg/kw

where aps is the ion propulsion system specific mass.
2 2. N_ P_ x 1000
i -—_EE E - , kg/s

[ % Isp ]

where m is the propulsion system mass flow rate.

n =
ps nPP "E
where nps is the propulsion system efficiency.
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3.4 Arcjet Analysis Output Parameters

The arcjet systems analysis calculates both engine and system
rformance eters. A complete list of the calculated parameters
ollows (note that in this list each parameter has listed its units as used by the
system mode] equations in section 3.5.2 and in parentheses its common usage
units which are displayed on the SPACED&IVE system analysis utility

screen):

Engine Parameters:

Isp engine specific impulse, s (s)
PE engine input power, kW (kW)

"E total engine efficiency

'I.'E engine thrust, N (N)

TE/PE thrust-to-power ratio, N/kW (mN/kW)

mE arcjet mass, kg (kg)

mpp power processor mass, kg (kg)

System 2arameters:

T total system thrust, N (N)

P available spacecraft power, XW (kW)
T/P thrust-to-power ratio, N/kW (mN/kW)
nps propulsion system mass, kg (kg)

aps propulsion system specific mass, kg/kW (kg/kW)
NE number of arcjets required

mfs flow system mass, kg (kg)

ms ep system structural mass, kg (kg)
m system mass flow rate, kg/s (g/s)
np' propulsion system efficiency

o et imy e =
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Figure 3 shows a d.c. arcjet engine (which is the arcjet concept
assumed for this analysis) and identifies the major engine design parameters P
that are included in the list above.
3.5 Arcjet Engine Analysis Model
The SPACEDRIVE arcjet engine analysis is designed to give
satisfactory results with a miniomum of user inputs and with a minissam '

required level of user electric propulsion expertise. For users familiar with
arcjet engine operation, operating data from existing engines may be used as
inputs into the SPACED arcjet engine system analysis and the results
may be compared with known parameters.

3.5.1 Arcjet System Analysis Constants

Certain physical constants are used in the SPACEDRIVE arcjet
system analysis utility. The values assigned to these constants are shown

below: 1
"pp = 0.90 (power processor efficiency)
9, = 9.8 m/s2 (earth gravitational acceleration)

The following constraints are applied to the permissible specific impulse

values:
for NH3: 500.0 = Isp £ 1100.0 , Ispc = 165
for N2H4: 500.0 = Isp £ 1050.0 , Ispc = 152
for sz 500.0 = Isp £ 2250.0 , Ispc = 267

where Is is the specific impulse in seconds and Ispc is the cold
gas flow specific impulse in seconds.

For each propellant type, a maximum engine power is assigned, in accord
with conservative current technology limits:

Polyy = 30kW
3
* b
P_| = 30 kW
E'NH,

o A e e+
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where P; is the maximum allowable engine power.

3.5.2 Arcjet Engine Equations

This section presents the specific equations and methodology used by
SPACEDRIVE to determine arcjet engine and system performance
parameters. In the most S%art, these equations are presented in the order in
which they are used by SPACED . While some of the equations are
derivable from known arcjet engine physical operating principles, many are
empirically derived from ing known arcjet engine performance
characteristics and system characteristics. The papers and reports from
which these data were obtained are contained in the reference section at the
end of this document. Some assumptions had to be made to construct a
closed form solution scheme. These assumptions were, in all cases, made to
give conservative results with no stringent demand on one particular
technology level. It is impossible, in a general model such as this one, to
embrace everyone's views on specific levels of technology development.
Nevertheless, the model equations do satisfactorily predict the performance
of most d.c. arcjet engines that have been developed or are presently under
development and testing. The solution scheme is as follows:

From the user input of available spacecraft power, the number of
arcjet engines necessary to process this power is determined from:

P

where NE is the number of engines which is set to the next

highest integer.

Note that no egfine redundancy is assumed and that for the rest of the
analysisda.n equal number of arcjet engines and power processor units is
assumed.

Arcjet engine input power requirements are then determined from the
following equation:

where PE is the arcjet engine input power.




The power-to-mass flow rate ratio is determined next from the
following set of emperically derived equations:

[ P_ )

. E - ~ 2 _2.055
for NH,: L o 8.543 x 10 Isp , kW/kg/s
[ Pg 1 2 _2.151
for N2H4: “ ou J = 5.775 x 10 Isp , kW/kg/s
Pe 3 _2.608
for H,: o | = 1,230 x 10 Is; . kW/kg/s

P
where [ ﬁE ] is the power-to-mass flow rate ratio.

From the above results, the arcjet engine efficiency and the arcjet
propulsion system efficiency are determined using the following equations:
I2
sp

E 4 b
2

[ P, X 1000 ] 2, Ispc
m { 2
9, [ P, X 1000 ]

.
m
L J

—

where “E is the arcjet engine efficiency.

n_=n_Mm
ps pp E

where "ps is the arcjet propulsion system efficiency.

The remaining parameters are determined from the following scaling
relations:

m_ = 0.0635 [ P_, x 1000 kg

0.50
E E ] '

where m, is the arcjet engine mass including thermal isolation.
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m = 0.115 [ P_ x 1000 k
PP [ E ] g

where mpp is the power processor mass.

m,_ = 5.80 + 1.54 N_ , kg

where mfs is the flow system mass.

m_ = .30 [ N, m ] + 2.277 [ Ny Py ] , kg

where L is the arcjet engine system structural and passive
thermal radiator mass.

m =N [ L. + mg ] +m_+m,_, kg

where P is the propulsion system mass.

m
= P8
aps P’ kg/kW

where aps is the arcjet propulsion system specific mass.

N_ P

for NH_: m = E £ , kg/s
[ 8.543 x 10 ~ 2 12:055
sp
N_ P
for N234: n = E E . kg/s
[ 5.775 x 10 ~ % r2-151 ]
sp
17




N_ P
. E E
for H_: m= , kg/s
[ 1.230 x 10 ~ 3 r2-608 ]
sp

where m is the arcjet propulsion system mass flow rate.

Tg = Bgy I N

where TE is the arcjet engine thrust.

T = NE TE , N

where T is the total propulsion system thrust.

il go ISE
TE/PE = PE ,» N/KW

where TE/PE is the arcjet engine thrust-to-power ratio.

N_ T
T/P = —EE—E , N/KW

where T/P is the arcjet engine system thrust-to-power ratio.

3.6 Mission Analysis

Missions were selected for analysis in SPACEDRIVE by merit of
their interest to SDI applications. These missions include orbit transfer,
station keeping, and station keeping with defensive maneuvering. To use the
SPACED mission analysis utility, the user specifies the pertinent
mission parameters such as initial and final altitudes and mission duration.
The user may select one of two on-board power sources, solar arrays or
nuclear power. After selecting these mission parameters, the user is required
to specify several propulsion system parameters. It is advised, but not
required, that the user enter propulsion system data obtained from the
SPACEDRIVE ion or arcjet system analysis. After specifying all requested
data, the analysis calculates the propellant consumed on the mission and the
required initial spacecraft mass including the electric pr?ulsion system mass

propellant (initial spacecraft mass, which must include the power source,
is a user required input). In addition, the total impulse, total burn time,




number of earth orbits or defensive maneuvers, and the total trip time are
also determined. A comtparison with chemical propulsion is also provided,
where for orbit transfer missions it is assumed that a crwenic
oxygen/hydrogen system is used with a vacuum specific impulse of sec.
For station keeping missions, a storable bipropellant NTO/MMH system is
] assumed with a vacuum specific impulse of 308 sec.

The station keeBing mission with defensive maneuvering should be of
particular interest to SDI applications. This mission simulates the flight of a
spacecraft in a station ke:gmdg orbit where some slight orbit raising and then
lowering back to the specified orbit is reguired riodically to reduce the risk
of detection. As modeled in SPACE RIVE], these defensive maneuvers
F occur at user specified intervals and for a user specified altitude change.

3.6.1 Auxiliary Mission Equations and Assumptions
For all ion and arg‘let propulsion systems used in the SPACEDRIVE
e pr

mission analysis utility, opellant tank mass and associated support
structure mass are determined by the following relations:

Xe: mts = 0.144 mp, kg
Kr: mts = 0.180 mp, kg
Ar: mts = 0.250 mp, kg

NH3: mts = 0.17 mp, kg

| N2H4: mts = 0.17 mp, kg

HZ: mts = 0.35 mp, kg

: where mts is the propellant tank and tank structure mass and mp
is the propellant mass.

The additional structure mass represented by these equations is added to the
overall electric propulsion system mass during the mission analysis
calculations. Note that the electric propulsion system mass required as an

i input on the SPACEDRIVE mission analysis menu does not include the
propellant tank mass and support structure since the mission propellant
requirement is not known apriori. The chemical propulsion system mass
estimates are determined from the following relations:

£ H_: = .
i or 02/ 2 mcps 1998 + 1.0589 mp, kg




cps
where mcps is the chemical propulsion system mass which includes
all hardware and propellant.

‘ for NTO/MMH: m = 89 + 1.146 mp, kg

SPACEDRIVE adds on adapter to the user host spacecraft. The mass of this
propulsion system attachment adapter is 10% of the attached propulsion
system (electric or chemical) including all structure and mission propellant.

F Significant simplifying assumptions used in the SPACEDRIVE
b

‘ For both electric and chemical propulsion mission analz'ses,

mission analysis utility are given below:
(i) Atmospheric drag is neglected.
(ii) Only coplanar altitude orbit changes are allowed.

; (iii) For solar array power, the spacecraft is assumed to always pass
throu'ih the shadow cone of the earth as it spirals out, during which
time the propulsion system is shutdown.

All references used to construct the mission models are contained in the
reference listing at the end of this document.

3.6.2 Orbit Transfer Analysis

The rocket equation is used to obtain an initial estimate for the
amount of propellant required to complete the mission. This initial
propellant estimate is used to determine an initial spacecraft mass. This
spacecraft is then subjected to the SPACEDRIVE mission analysis which
calculates propellant consumption and altitude change for each orbit,
iterating through the following calculations:

The spacecraft's altitude determines the required orbital velocity and
the orbit period. The propulsion system's mass flow rate is used to calculate
the total amount of propellant that can pass through the propulsion system
on each orbit. For solar powered spacecraft, this burn per orbit is adjusted to
account for the time in the earth’s shadow. Having determined the

ropellant burned per orbit, the altitude change per orbit is then determined
gy numerically integrating the radial rate equation that describes the effect of
essentially continuous tanientia.l thrust applied to a quasi-circular orbit. At
the end of each orbit, a check on the remaining r:lpellant is made. If the
spacecraft runs out of cf)ropellant before the fi titude is reached, then
more propellant is added to the initial propellant mass estimate (and the

e mass estimate is adjusted) and this new spacecraft is subjected to the
orbit-by-orbit analysis. If the spacecraft achieves its final orbit altitude
before ing out of propellant, then the remaining propellant is checked.
If more than 5% of the initial propellant remains in the spacecraft, then the
initial propellant mass is reduced (and the tankage mass estimate is adjusted)
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and the new spacecraft is subjected to the orbit-by-orbit mission analysis.
This process continues until the initial propellant estimate agrees to within
5% of the required propellant. When this agreement is acheived, the
solution is considered acceptable.

3.6.3 Station Keeping Analysis

To maintain a spacecraft in orbit at the specified altitude, it is
assumed that SOm/s/year of delta-V is required to account for the average of
the sum of the north-south and east-west station keeping requirements.
Using this assumption and the prolgulsion system mass flow rate, the
prgglelllant required to maintain the orbit for the desired number of years is
readily determined. The mission analysis results follow directly.

3.6.4 Station Keeping with Defensive Maneuvering Analysis

Station keeping with defensive maneuvering combines the orbit
raising and station keeping analyses. Assuming that the spacecraft completes
its mission with no propellant, a final ?aeecraft mass is calculated using the
user specified dry mass and an arbitrarily chosen € mass.
This initial spacecraft is flown "backwards” through the mission, adding the
proEellant required for each orbit raising/lowering defensive maneuver and
each on-station leg. After iterating "backwards" for the time required for the
mission duration, initial estimates for the required propellant and tankage
mass are obtained. This initial spacecraft mass is then subject to the same
iterative scheme used by the orbit raising mission analysis.

3.7 Reference Search Utility

SPACEDRIVE allows the user access to an electric propulsion
reference library through either predefined keywords or an author's name.
Once the user has selected keywords (up to five) or given an author'’s name,
the entire reference database is searched in one pass, examining keyword or
author name data fields for matches. Each reference contained in the
reference database has five keyword data fields and three author name data
fields and when the data in the appropriate fields agrees with the user's input,
the reference is displayed. ere are approximately 1100 references
recorded in this electric propulsion reference database.

ords are grouped according to topics. If two keywords are
selected from the same topic, they are concatenated with the logical "or"
operator. In this case, references containing either of the specified ords
are selected. When two keywords are selected from different topics, they are
concatenated with the logical "and" operator. In this case, only references
containing both keywords are selected. By selecting keywords from topic
lists, the user can construct very specific searches of the reterence data base.
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3.8 Overviews Utility

SPACEDRIVE contains descriptive overviews of many electric
propulsion engine concepts that have been developed, or are presently under
development. Each overview describes the basic %perating principles of the
ﬁm concept, ical performance levels, development history, its

eability to higher power levels, and any flight tests. It is highly
recommended that the user read the overviews provided in this utility to
obtain a better understanding of electric propulsion engines for more
effective use of the other SPA RIVE utilities.

4.0 SPACEDRIVE USER'S GUIDE

Potential users of the SPACEDRIVE software include personnel that
wish to acquire a more complete understanding of the capabilities of electric
pro&ulsion engines, as well as individuals who require immediate projections
on the electric propulsion system design required for a ‘si?ecific application or
the mission capability of a :Peciﬁc engine design. Individuals who wish to
canvas existing reports, articles or papers for general knowledge or specific
performance data will find the m reference search useful. Finally, the
overviews included in SPACED can be used for educational p ses,
or as a quick reference to general engine capabilities of the many electric
propulsion concepts presented.

4.1 SPACEDRIVE Installation

Installation of the SPACEDRIVE software requires a 640K IBM PC,
XT, AT, or 100% compatible computer with at least one floppy disk drive
and a hard disk with 1.0MB of free space. Also, the computer must use
either MS DOS 3.2 (or higher) or PC DOS 3.2 (or higher) and must have
files = 20 in the Config.sys file. The computer system must also use an EGA
card and color monitor. To install SPACED the user should create a
subdirectory (the name is arbi on his hard disk and then copy all the
files from all of the SPACED diskettes into this subdirectory. After
eompletinﬁl_tvhnsﬁ installation, the user enters his subdirectory containing the
SPACED software and types "“SPACEDRIVE" at the DOS prompt.
SPACEDRIVE then begins execution. The color monitor may be adjusted
to display the SPACED menus in a blue-green-brown palette, or to the
user's taste.

42 SPACEDRIVE Operation

User interactive menus drive the SPACEDRIVE software. In the top
level menu, the user must select one of the four utilities: a) systems analysis,
b) mission analysis, c¢) reference libr%search, or d) overview display. As
with all the SPA RIVE menus, LPS" are displayed, instructing the
user on how to make his selection. In addition, the menus are color coded to
assist the user in understanding and remembering the organization of the
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information on the screen. After the user responds to the selection query,
the system, mission, reference, or overview menu appears, as requested by
the user. Each of these menus requires some inputs from the user. If the
user should make a selection or enter data SPACEDRIVE cannot process,
the unacceptable input is rejected, the user is informed of the reason for
rejection, and he is required to modify his entry before the program can
continue. Once all inputs are entered, the user is requeste.: to review his
data and is given the opportunity to change any entries.

When data entry is completed, the user begins the analysis, search or
display with a keystroke ennK. The user must wait until the utility
calculations are completed. Results are automatically displayed on the
screen. This calcuation waiting period depends on the capabilities of the
host computer. In all cases, availability of a math coprocessor will
signi reduce SPACEDRIVE execution time. In general, for an IBM

or compatible computer operating at 8MHz with a math coprocessor,
most system analysis results are displayed in a few seconds while a few
minutes of waiting time is typical before most mission analysis and reference
search results are displayed. However, for certain mission analysis scenarios
the waiting time can be of the order of half an hour. (In the event of a non-
converging calculation, a counter in the mission analysis model will stop
Erogram execution after approximately two hours). At this point, the user

as the options of continuing or terminating his SPACEDRIVE session.

4.2.1 Helps

As stated above, each SPACEDRIVE menu is accompanied with
screen-displayed "HELPS".  These helps state the restrictions on
SPACED acceptable data. For the entry of numerical data, these
"HELPS" are of particular importance because they define units of measure
and the bounds for acceptable data. It is very important for the user of
SPACEDRIVE to read these "HELPS" while he enters data.

4,2.2 Printer Instructions

When the user chooses to print his results, he is instructed to check his
rinter and paper. At this point, it is very important that the user ensure that
is printer is on-line and that sufficient gaper is available. If these checks are
not completed correctly, SPACED may stop execution, or behave in
some other unexpected manner.

4.2.3 Terminating a SPACEDRIVE Session

At any time that the user is requested to make a selection or enter
data, he may terminate his SPACED session by pressing the "ESC" key.
Pressing the "ESC" key will not terminate the session if a system analysis,
mission analysis, reference library search or overview display is in progress.
Because the analyses and searches can be time consuming (several minutes),
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the user is urged to verify his data before beginning an analysis or search. It
will be necessary to reboot the computer to reenter SPACEDRIVE if the
user wants to terminate the progress of a lengthy calculation or search.

4.2.4 Disclaimer and Software Protection

The Electric Propulsion Laboratory, Inc. provides SPACEDRIVE
without warranty of any kind. It is a virtual certainty that the software
contains some bu; desxllt‘e thorough testm% In addition, this software is
protected by the DoD F. sul:paragl’:;,&hzzc7 ii) Rights and Technical Data
and Computer Software Clause at -7013. The user should not
duplicate or disclose this software without the explicit permission of the
Electric Propulsion Laboratory, Inc. In the event that an accompanlging
diskette is corrupted, please contact the Electric Propulsion Laboratory, Inc.

4.3 SPACEDRIVE Code
SPACEDRIVE uses two pr i es, dBaselll+,
compiled with Clipper, and mmﬁme mm+, Clipper

compiled code is used primarily to present the user interactive menus, to
dns{p y the results, to perform the library searches and to record the
reference library and overview data. Microsoft FORTRAN is used to
program the routines that perform the system and mission analyses. Data
that the user enters in the interactive menus is passed to the FORTRAN
routines via ASCII data files. Similarly, analysis results are passed from the
FORTRAN routines to the dBaselll + display routines via XSCII data files.
It is this transfer of data that links the operation of the different sections of
the SPACEDRIVE code.
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Figure 3. D.C. Arcjet Engine.




